Product Description
5-400 Kw Low Noise Electric Water Lubricated/Injected Oil Free Oilless Direct Coupling Rotary Screw Type Air Compressor Advantages
1.Clean air 100% oil-free
2.Use water instead of oil, higher cooling efficiency and compression efficiency
3.Optimal isothermal compression
4.Powerful MAM microcomputer controller and touch screen
5.Reasonable Structure, with perfect balancing
6.Components made of anti-rust and anti-corrosion materials ensure the durability
7.Significant energy saving, environmental-friendly and pollution-free
8.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc.
DENAIR Water-lubricated Oil Free Screw Air Compressor In Hannover Messe 2017
Technical Parameters Of Water-lubricated Oil-free Screw Air Compressor
| Model | Maximum working pressure |
Capacity (FAD)* |
Installed motor power |
Noise Level** |
Dimensions (mm) |
Weight | Air Outlet Pipe Diameter |
|||||||
| 50 Hz | 60 Hz | |||||||||||||
| bar(e) | psig | m3/min | cfm | m3/min | cfm | kW | hp | dB(A) | L | W | H | kG | ||
| DAW-15 | 7.5 | 109 | 2 | 71 | 1.48 | 52 | 15 | 20 | 63 | 1200 | 900 | 1200 | 650 | G1″ |
| 8.5 | 123 | 1.94 | 69 | 1.46 | 52 | 15 | 20 | 63 | 1600 | 1100 | 1500 | 650 | G1″ | |
| 10.5 | 152 | 1.66 | 59 | 1.42 | 50 | 15 | 20 | 63 | 1200 | 900 | 1200 | 650 | G1″ | |
| DAW-18 | 7.5 | 109 | 2.81 | 99 | 2.4 | 85 | 18.5 | 25 | 66 | 1600 | 1100 | 1500 | 800 | G1″ |
| 8.5 | 123 | 2.7 | 95 | 2.33 | 82 | 18.5 | 25 | 66 | 1600 | 1100 | 1500 | 800 | G1″ | |
| 10.5 | 152 | 2.19 | 77 | 1.99 | 70 | 18.5 | 25 | 66 | 1600 | 1100 | 1500 | 800 | G1″ | |
| DAW-22 | 7.5 | 109 | 3.48 | 123 | 3.37 | 119 | 22 | 30 | 66 | 1600 | 1100 | 1500 | 850 | G1″ |
| 8.5 | 123 | 3.46 | 122 | 3.24 | 114 | 22 | 30 | 66 | 1600 | 1100 | 1500 | 850 | G1″ | |
| 10.5 | 152 | 2.73 | 96 | 2.63 | 93 | 22 | 30 | 66 | 1600 | 1100 | 1500 | 850 | G1″ | |
| DAW-30 | 7.5 | 109 | 5.27 | 186 | 4.18 | 148 | 30 | 40 | 69 | 1600 | 1100 | 1500 | 920 | G1-1/2″ |
| 8.5 | 123 | 5.15 | 182 | 4.15 | 147 | 30 | 40 | 69 | 1600 | 1100 | 1500 | 920 | G1-1/2″ | |
| 10.5 | 152 | 3.55 | 125 | 3.28 | 116 | 30 | 40 | 69 | 1600 | 1100 | 1500 | 920 | G1-1/2″ | |
| DAW-37 | 7.5 | 109 | 6.5 | 229 | 6.33 | 223 | 37 | 50 | 69 | 1600 | 1100 | 1500 | 950 | G1-1/2″ |
| 8.5 | 123 | 6.26 | 221 | 6.18 | 218 | 37 | 50 | 69 | 1600 | 1100 | 1500 | 950 | G1-1/2″ | |
| 10.5 | 152 | 5.21 | 184 | 4.26 | 151 | 37 | 50 | 69 | 1600 | 1100 | 1500 | 950 | G1-1/2″ | |
| DAW-45 | 7.5 | 109 | 8.2 | 289 | 7.8 | 275 | 45 | 60 | 69 | 2200 | 1400 | 1800 | 1700 | DN50 |
| 8.5 | 123 | 7.81 | 276 | 7.51 | 265 | 45 | 60 | 69 | 2200 | 1400 | 1800 | 1700 | DN50 | |
| 10.5 | 152 | 6.23 | 220 | 6.25 | 221 | 45 | 60 | 69 | 2200 | 1400 | 1800 | 1700 | DN50 | |
| DAW-45W | 7.5 | 109 | 8.2 | 289 | 7.8 | 275 | 45 | 60 | 66 | 2200 | 1400 | 1800 | 1500 | DN50 |
| 8.5 | 123 | 7.81 | 276 | 7.51 | 265 | 45 | 60 | 66 | 2200 | 1400 | 1800 | 1500 | DN50 | |
| 10.5 | 152 | 6.23 | 220 | 6.25 | 221 | 45 | 60 | 66 | 2200 | 1400 | 1800 | 1500 | DN50 | |
| DAW-55 | 7.5 | 109 | 9.32 | 329 | 7.8 | 347 | 55 | 75 | 69 | 2200 | 1400 | 1800 | 1800 | DN50 |
| 8.5 | 123 | 8.86 | 313 | 7.51 | 331 | 55 | 75 | 69 | 2200 | 1400 | 1800 | 1800 | DN50 | |
| 10.5 | 152 | 7.78 | 275 | 6.25 | 264 | 55 | 75 | 69 | 2200 | 1400 | 1800 | 1800 | DN50 | |
| DAW-55W | 7.5 | 109 | 9.32 | 329 | 9.84 | 347 | 55 | 75 | 66 | 2200 | 1400 | 1800 | 1800 | DN50 |
| 8.5 | 123 | 8.86 | 313 | 9.37 | 331 | 55 | 75 | 66 | 2200 | 1400 | 1800 | 1800 | DN50 | |
| 10.5 | 152 | 7.78 | 275 | 7.48 | 264 | 55 | 75 | 66 | 2200 | 1400 | 1800 | 1800 | DN50 | |
| DAW-75 | 7.5 | 109 | 12.41 | 438 | 11.19 | 395 | 75 | 100 | 73 | 2350 | 1400 | 1800 | 1800 | DN50 |
| 8.5 | 123 | 12.39 | 438 | 10.63 | 375 | 75 | 100 | 73 | 2350 | 1400 | 1800 | 1800 | DN50 | |
| 10.5 | 152 | 10.45 | 369 | 9.33 | 330 | 75 | 100 | 73 | 2350 | 1400 | 1800 | 1800 | DN50 | |
| DAW-75W | 7.5 | 109 | 12.41 | 438 | 11.19 | 395 | 75 | 100 | 71 | 2200 | 1400 | 1800 | 1800 | DN50 |
| 8.5 | 123 | 12.39 | 438 | 10.63 | 375 | 75 | 100 | 71 | 2200 | 1400 | 1800 | 1800 | DN50 | |
| 10.5 | 152 | 10.45 | 369 | 9.33 | 330 | 75 | 100 | 71 | 2200 | 1400 | 1800 | 1800 | DN50 | |
| DAW-90W | 7.5 | 109 | 16.48 | 582 | 15.39 | 543 | 90 | 120 | 73 | 2400 | 1700 | 1800 | 1800 | DN65 |
| 8.5 | 123 | 16.36 | 578 | 15.24 | 538 | 90 | 120 | 73 | 2400 | 1700 | 1800 | 1800 | DN65 | |
| 10.5 | 152 | 12.82 | 453 | 12.52 | 442 | 90 | 120 | 73 | 2400 | 1700 | 1800 | 1800 | DN65 | |
| DAW-110W | 7.5 | 109 | 20.45 | 722 | 19.78 | 698 | 110 | 150 | 73 | 2400 | 1700 | 1800 | 1800 | DN65 |
| 8.5 | 123 | 19.82 | 100 | 19.63 | 693 | 110 | 150 | 73 | 2400 | 1700 | 1800 | 1800 | DN65 | |
| 10.5 | 152 | 15.55 | 549 | 15.35 | 542 | 110 | 150 | 73 | 2400 | 1700 | 1800 | 1800 | DN65 | |
| DAW-132W | 7.5 | 109 | 21.99 | 776 | 24.53 | 886 | 132 | 175 | 76 | 2400 | 1700 | 1800 | 1800 | DN65 |
| 8.5 | 123 | 21.94 | 775 | 23.78 | 840 | 132 | 175 | 76 | 2400 | 1700 | 1800 | 1800 | DN65 | |
| 10.5 | 152 | 19.79 | 699 | 18.66 | 659 | 132 | 175 | 76 | 2400 | 1700 | 1800 | 1800 | DN65 | |
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
DENAIR Factory
At DENAIR, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 90 countries across the globe. We have sales representatives who can speak English, Spanish, French, Russian and Arabic, which makes it easier for our clients from all over the world to interact and negotiate with us.
DENAIR Services
DENAIR Oil Free Screw Air Compressor Application and Installation
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang 201502, China
And our factory is located in No.58,Hulu road, Xinbang Town, Industrial area, Xihu (West Lake) Dis. District, ZheJiang , China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
| Warranty: | 2years |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-10-10
China Custom SCR100g Oil-Free/ Oil Less Screw Air Compressor with Good quality
Product Description
If you are interested in any of our products,please feel free to contact us.
We are looking CHINAMFG to cooperating,growing and developing with your sincerely
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-10-09
China manufacturer Oil Free Air Compressor Oilless Industry Single Screw Air Comopressors Tr-220va/W 220kw air compressor price
Product Description
Lead Time
Product Description
TR-11VA/W 0.8-1.25Mpa 8-12.5Bar 0.35-1.72m3/min 11KW screw brand water lubricating oil free dental oil-free air compressor
Specifications
| Model |
Maximum working Pressure |
FAD |
Motor Power |
Noise |
Pipe diameters of cooling water in and out |
Quantity of cooling water |
Quantity of lubricating water |
Dimension | Weight |
Air outlet |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Inlet water 32ºC |
L*W*H | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Mpa | M3/min | KW | DB | T/H | L | mm | KG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| TR-11VA/W | 0.8 | 0.54-1.72 | 11 | 60 | 1″ | 2.5 | 26 | 12.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox.
direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min). 12. Automatic Cleaning System The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary. Introduction Company Information Package Delivery
BACK HOME
How are air compressors utilized in the aerospace industry?Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry: 1. Aircraft Systems: Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems. 2. Ground Support Equipment: Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations. 3. Component Testing: Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components. 4. Airborne Systems: In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight. 5. Environmental Control Systems: Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels. 6. Engine Testing: In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements. 7. Oxygen Systems: In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes. It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
What is the role of air compressors in manufacturing and industrial processes?Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings: 1. Pneumatic Tools and Equipment: Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations. 2. Automation and Control Systems: Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes. 3. Air Blowing and Cleaning: Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations. 4. Air Separation and Gas Generation: Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging. 5. HVAC Systems: Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications. 6. Air Compression for Storage and Transport: Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems. 7. Process Instrumentation: Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes. 8. Material Handling and Pneumatic Conveying: In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer. Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
Can you explain the basics of air compressor terminology?Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors: 1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity. 2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications. 3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle. 4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models. 5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods. 6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures. 7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance. 8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization. 9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air. These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.
China supplier 10HP 15HP 20HP 30HP CHINAMFG Air End Oil Lubricated Pm VSD Energy Saving Four-in-One Screw Air Compressor with 380L 500L Tank for Fiber Cutting air compressor priceProduct Description
Product Description
product introduction
Detailed Photos
Easy to operate
High reliability
No base operation
Product Parameters
Certifications
OPPAIR’s quality meets EU standards and has CE quality inspection certificate. The testing agency is a recognized certification agency in Italy. After certification at our factory site, strict machine testing and CE certificate are issued. Authority, more trustworthy. The following picture is the certification certificate issued by SGS company after the on-site certification of our company. Field Certification CHINAMFG is a trusted manufacturer.
Packaging & Shipping Our company cleans the inside and outside of the product before delivery, and then covers it with multi-layer industrial stretch film, bubble film, anti-collision column, and finally loads it with wooden pallets or wooden boxes.
Company Profile ZheJiang CHINAMFG Machinery Manufacturing Co.,Ld base in HangZhou ZheJiang , anAAA-level enterprise with high-quality service and integrity in China.
FAQ Q1: Why do customers choose us? Q2: Are you a manufacturer or a trading company? Q3: What is your delivery time? Q4: How long is the warranty period of your air compressor? Q5: How long can your air compressor last? Q6: What are the payment terms? Q7: Will you provide some spare parts for the machine? Q8: Can you accept OEM orders? Q9: What kind of trade terms can you accept? Q10: How about the product packaging?
What are the advantages of using rotary vane compressors?Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors: 1. Compact and Lightweight: Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability. 2. High Efficiency: Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time. 3. Quiet Operation: Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas. 4. Oil Lubrication: Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage. 5. Versatile Applications: Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications. 6. Easy Maintenance: Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective. These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
What is the energy efficiency of modern air compressors?The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors: Variable Speed Drive (VSD) Technology: Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors. Air Leakage Reduction: Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings. Efficient Motor Design: The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption. Optimized Control Systems: Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation. Air Storage and Distribution: Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste. Energy Management and Monitoring: Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices. It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application. Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
What is the difference between a piston and rotary screw compressor?Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types: 1. Operating Principle:
2. Compression Method:
3. Efficiency:
4. Noise Level:
5. Maintenance:
6. Size and Portability:
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.
China supplier (SCR100G Series) Hot Sale Ghh Oil-Free Airend Ultracoat TM Super Coating Dry Type Oil Free Silent Screw Air Compressor with Good qualityProduct Description
If you are interested in any of ourFAQ
How are air compressors used in the food and beverage industry?Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry: 1. Packaging and Filling: Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products. 2. Cleaning and Sanitization: Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents. 3. Cooling and Refrigeration: In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes. 4. Aeration and Mixing: Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products. 5. Pneumatic Conveying: In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination. 6. Quality Control and Testing: Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing. 7. Air Agitation: In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives. It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage. By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
What are the environmental considerations when using air compressors?When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors: Energy Efficiency: Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint. Air Leakage: Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency. Noise Pollution: Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution. Emissions: While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors. Proper Waste Management: Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact. Sustainable Practices: Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design. By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
What are the different types of air compressors?There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types: 1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications. 2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications. 3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air. 4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications. 5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air. 6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment. These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.
China 100 1500cfm Screw 500 1000 L Scroll 270 cfm Piston 10 25 Bar Diesel Oil Free Air Compressor air compressor for saleError:获取返回内容失败,
Choosing the Right Air Compressor For Your HomeYou will find that air compressors are indispensable tools for a variety of situations, including garages, home workshops, and basements. These tools can power a variety of tools, and each model is sized to suit the job at hand. Because air compressors have only one motor, they are lightweight, compact, and easy to handle. Using one air compressor to power several tools will also reduce the wear and tear on individual components. This article will introduce some important characteristics to look for when choosing the right air compressor for your home. Positive displacementA positive displacement compressor applies pressure to a fluid, whereas a centrifugal one does the opposite. A positive displacement compressor creates the desired pressure by trapping air and increasing its volume. Its discharge valve releases the high-pressure gas. These compressors are used in industrial applications and nuclear power plants. The difference between a positive and negative displacement compressor is that a positive displacement compressor can compress and release air at a consistent rate. Oil-freeOil-free air compressors have some advantages over their oil-lubricated counterparts. They do not require lubrication oil because they are coated with Teflon. The material has one of the lowest coefficients of friction and is layered, so it slides past other layers with little effort. Because of this, oil-free compressors tend to be cheaper and still deliver comparable performance. Oil-free compressors are a good choice for industrial applications. Single-stageA single-stage air compressor is designed to provide the power for a single pneumatic tool or device. These machines are generally smaller than two-stage compressors and produce less heat and energy. These machines aren’t designed for heavy-duty industries, but they are still highly effective for a variety of applications, including auto shops, gas stations, and various manufacturing plants. They can also be used in borewells, as they are suitable for small spaces with low air flow requirements. CFMThe cubic foot-per-minute (CFM) of an air compressor is the output of the machine. In order to calculate the CFM level, start by looking at the compressor’s specifications. You should know how many cubic feet the unit can hold and how many pounds per square inch it can compress. Once you have these information, you can calculate the CFM. Now you can use these numbers to select an appropriate air compressor for your needs. PSIThe PSI of an air compressor is the pressure that it can output. A typical air compressor has a gauge connected to the airline at the bottom, next to it, or between the two. The gauge tells the actual pressure of the air compressor, while the cut-out pressure is determined by the manufacturer. The manufacturer recommends that you set the cut-out pressure twenty to forty PSI higher than the factory recommended pressure. If you want to set the pressure for your nail gun, you can use the cut-in and cut-out pressures on your compressor, and the tank won’t exceed this range. Power sourceThe power source for an air compressor is crucial in its operation. Without the correct voltage and amperage, air compressors will not function properly. The power source must be close to the compressor so that it can plug into an electrical outlet. If it is too far from the outlet, the compressor may not be able to build enough pressure. When this happens, the fuse inside the air compressor will turn off to protect the user. The power source should be a safe distance from the compressor.
China CE Cetificate 22kw 30HP High Pressure Electric Industrial Rotary Driven Machines Oil Free Screw Air Compressor manufacturerProduct Description
OFAC oil-free screw air compressor used Japanese Mitsui’s unique technologies, who is the only upkeep services provider in China.
F– air cooling method S– water cooling method FAQ Q1: Warranty phrases of your equipment? Q2: Will you offer some spare components of the devices? Q3: What about solution deal? This fall: Can you use our model? Q5: How extended will you consider to prepare creation? Q6: How A lot of Staff Are There In your Manufacturing facility? Q8: What the precisely tackle of your manufacturing facility?
###
###
###
###
###
###
Choosing an Air CompressorConsidering a new Air Compressor? Here are some tips to make the decision easier. Learn the pros and cons of each type, including the differences between oil-injected and oil-free models, single stage and positive displacement. In addition, learn more about the different technologies that are available for your air compressor. It is important to choose an appropriate unit for the type of work you do. Here are some of the best compressors available today. Positive displacementThere are several different types of air compressors, but most are positive displacement air compressors. They use a rotary or reciprocating component to compress air. The reciprocating component compresses air by reducing the volume of the chamber. Positive displacement compressors are used in bicycle pumps, chemical plants, and refrigerators. Positive displacement air compressors use multiple inlet ports. Despite the various types, the principle of operation remains the same. Oil-injectedOil-flooded or oil-injected air compressors use liquid to seal and lubricate moving parts and reduce noise. Oil-flooded air compressors are effective for a variety of pneumatic tools and accessories. Some models have a thermostat that controls the amount of oil used during operation. Other types of oil-flooded air compressors are piston-type models. Here is an overview of the basic differences between these two air compressors. Oil-freeWhen choosing an air compressor for your company, you’ll need to determine what it is going to be used for. For example, if you’re planning on using it to power multiple workers, you should consider getting an oil-free compressor. An oil-free compressor, on the other hand, is quieter and can power several workers at a time. If you’re a contractor, the most important consideration will be the type of jobs you’ll be doing. Higher air pressure means greater demand for air flow, and more pressure can damage the equipment. Single-stageA single-stage air compressor, also known as a piston air compressor, compresses air only once before storing it in a cylinder. This stored air has enough energy to power a variety of pneumatic tools, such as screwdrivers, chisels, and wrenches. These units are also ideally suited for low-flow applications and are widely used in gas stations, auto shops, and various manufacturing plants. Low-noiseA low-noise air compressor is a type of industrial compressor that is less noisy than regular air compressors. These are generally smaller machines designed for smaller factories and workshops with a few to several employees. They are designed to handle mid-weight volumes of compressed air per day. This type of compressor is especially useful for smaller manufacturing businesses that need to produce compressed air for medical applications. Small breweries can also benefit from the low-noise capabilities of these compressors.
China Electric silent oil free screw type 7.5kw 15kw 22kw 37kw 75kw air compressor 8bar 10bar 13bar with CE for Industrial air compressor for saleRelevant Industries: Resorts, Garment Shops, Developing Materials Outlets, Producing Plant, Machinery Restore Retailers, Foodstuff & Beverage Factory, Farms, Cafe, Home Use, Retail, Foods Store, Printing Shops, Design works , Power & Mining, Foods & Beverage Retailers, Other, Advertising Business
A Buyer’s Guide to Air Compressor TypesThere are many types of Air Compressors, and it’s important to understand what each type has to offer. In this article, we’ll discuss single stage air compressors, low-noise compressors, and models with two pistons. But, before you buy an Air Compressor, be sure to read our buyer’s guide to the various types. This way, you’ll have all of the information you need to make the right decision for your business. Single-stage air compressorsA single-stage air compressor is an excellent choice for most general-purpose purposes. They provide enough power to operate pneumatic tools, and they produce less heat. Single-stage air compressors, however, are not suitable for heavy-duty industrial uses. However, they can be used in various applications, including auto shops, gas stations, and various manufacturing facilities. They are also suitable for borewells and other high-pressure places. Rotary vane compressorsRotary vane compressors use a centrifugal pump to compress air. The rotor is set eccentrically in the housing, which almost touches the vane. As the rotor turns, the air that enters the pump is trapped between the vanes. This compressed air undergoes compression as the rotor rotates. Vanes are small pieces of carbon fiber or graphite composite. Vanes may be made of different materials depending on the application. Rotary vane compressors with low-noise modelsIf you are looking for a rotary vane air compressor, you have come to the right place. CZPT’s LV Series rotary vane compressors offer low-noise models, compact size, and robust integration. In addition to their low-noise features, they feature large filter systems to deliver high-quality compressed air. The LV Series models also feature CZPT’s reputation for reliability and quality. Rotary vane compressors with two pistonsThe rotary vane and rotary screw compressors are similar in application, but both have different advantages and disadvantages. This article will compare the benefits of each and highlight the differences between them. While both are commonly used in industrial applications, rotary vane compressors are preferred by many industries. These compressors also have a wide range of uses, ranging from automotive air tool operation to milking machines. These compressors also have the advantage of being quieter than piston-powered ones.
China 75 Kw 100 HP Soundproof 7 Bar 8 Bar 10 Bar Electric Stationary Air/Water Cooling Direct Drive Oil Less Rotary Single Screw Type Pm VSD Air Compressor air compressor priceProduct Description
two~40bar Direct-DRIVE H2o-INJECTED OIL-FREE SCREW AIR COMPRESSOR (PM VSD)
1. Low temperature means far more effectiveness 2. Slicing the maintenance price 3. Steering clear of the expenses of added energy to combat stress fall 4. No Gearbox No need to have for related oil lubrication. five. Simple structure
Solution Parameters
Solution Description
Company Profile
Hot Sale Products
2~10bar Oil-injected 7~16bar All-in-1 Small One-stage
two~40bar one hundred% Oil-free 8~12bar 100% Oil-free Diesel Engine Moveable
Principal Solution
What we can supply:
* Oil-injected Screw Air Compressor (2~16 bar)
###
###
###
###
Types of Air CompressorsThere are many types of Air Compressors available on the market. Learn which one is right for your needs and what makes one better than another. Find out more about Single-stage models, Oil-free models, and Low-noise models. This article will explain these types and help you decide which one you need. You can also learn about Air Compressors that have single-stage compressors. If you are looking for a high-quality compressor, this article will help you choose a unit. Air CompressorsAir compressors work by forcing atmospheric air through an inlet valve. As the piston moves down, it pulls atmospheric air into the chamber. As the piston rises, it forces the compressed air out of the cylinder through an exhaust valve. One of the most common types of air compressor is the reciprocating type. Another type of compressor is a single-stage piston. These types of compressors compress air in one stroke – equivalent to the complete rotation of the piston’s crankshaft. Single-stage modelsWhen comparing single-stage air compressors, look for the term “stages.” Multi-stage compressors use two stages and can handle more capacity and pressure. One stage involves pressurizing air using a piston and a lower-pressure cylinder. This compressed air is then moved to a storage tank. Single-stage models tend to be more energy-efficient than their two-stage counterparts. But if you don’t need a high-pressure cylinder, a single-stage air compressor can be the best choice. Low-noise modelsDespite its name, low-noise models of air compressors are not all the same. The noise level of a compressor can be affected by several factors, including the power source and proximity to the machine. Reciprocal compressors are generally louder than electric ones because of their many moving parts. By contrast, rotary-screw and scroll compressors have fewer moving parts and are quieter. Oil-free modelsA number of oil-free models of air compressors are available, but what makes them special? Oil-free compressors don’t contain oil, so they’re lubricated by grease instead. They’re a good choice if you’re working with a small compressor and don’t want to risk damaging it. On the other hand, oil-free models do generate significant amounts of heat, which can damage the compressor. Higher pressure can grind the compressor against itself, or even warp it.
China Mhepo Rotary Free Part Parts Screw Portable Oilless High Pressure Used Industrial Mini Single Movable Max Dental AC Oil Piston Air Pump Compressor with Best SalesSolution Description
Oilless Air Compressor Featuers: Pressure swap instantly controls the commence and stop of the machine. 5. Help save human power Parts Features 2.Cylinder: manufactured of substantial-quality forged iron, energy, great lubricity, wall by the fantastic honing, dress in-resistant, tough three.Piston ring: good elasticity, superb put on resistance, reduced oil intake, not straightforward to make the valve team carbon deposition and reduction of oil to melt away the crankshaft and connecting rod. four.The crankshaft, connecting rod, piston: effectively well balanced, put on resistance, higher toughness, smooth running balance. 5.Substantial reliable and resilient valve powerful aluminum alloy body, light-weight and heat. 6.The motor supplies dependable electricity, minimal voltage start up and running overall performance sturdy enthusiast cooled motor and human body specific shock evidence layout. seven.Double nozzles, have been utilized to direct the exhaust and force exhaust pressure swap with press button, protected and convenient eight.Oil free,silent,shield-environment,ideal for dental use. Frequency Asked Query
We are the maker. It is positioned in HangZhou City,ZHangZhoug Province,China. FOB,CFR,CIF or EXW are all satisfactory. T/T,L/C at sight or income. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Open Type |
| Installation Type: | Movable Type |
###
| Samples: |
US$ 60/Piece
1 Piece(Min.Order) |
|---|
###
| Customization: |
Available
|
|---|
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Open Type |
| Installation Type: | Movable Type |
###
| Samples: |
US$ 60/Piece
1 Piece(Min.Order) |
|---|
###
| Customization: |
Available
|
|---|
Choose an Air Compressor for Your Business
There are several factors to consider when choosing an air compressor for your business. One factor to consider is the type of compressor you are looking for, which may include single-stage, low noise, and positive displacement. Hope this article helps you make the right decision. After all, your business success will depend on this device! Let’s take a closer look at these factors. Also, consider what compressor manufacturers say about their products.
Positive displacement
Positive displacement air compressors compress air by drawing in a volume from an inlet and extruding it out of a chamber. This increases the pressure at which the gas can be pumped at rates that cannot be pumped through the outlet at lower pressures at higher mass flow rates. These types of compressors are available in single-acting and double-acting configurations. They are classified by the number of cylinders.
There are two different types of air compressors: reciprocating air compressors and screw compressors. Both are roll machines. Positive displacement air compressors use pistons and cylinders to compress air. The resulting air pressure builds up within the compressor housing, increasing the potential energy of the compressed air. Screw air compressors are the most popular positive displacement air compressors, which can be either single-stage screw-blade air compressors or multi-stage screw-blade oil-immersed screw air compressors.
Positive displacement flowmeters use a rotating measuring chamber to divide the fluid into discrete quantities. The number of times the chamber was refilled and emptied was used to estimate the total flow. However, positive displacement flow meters are prone to leaks, reducing the accuracy of the estimates. If a leak occurs, it can cause false readings and damage the compressor. However, leaks in positive displacement air compressors can reduce pressure.
The most common types of positive displacement air compressors are screw, reciprocating, and vane. Rotary positive displacement air compressors are also available as well as many other air compressors. Positive displacement air compressors are most commonly used in large manufacturing facilities. If you are considering an air compressor for commercial or industrial applications, it is imperative to understand how the components of the unit work. Please read the information below to learn more before deciding which application is best for you.
Positive displacement air compressors use a piston to force air into a chamber, compressing the air in the process. The piston moves in the opposite direction, thereby reducing the volume of the chamber. When the amount of air in the chamber reaches its maximum value, the valve opens, allowing it to escape at higher pressure. Positive displacement air compressors are generally less efficient than centrifugal compressors. However, they are still an excellent choice for a variety of applications.
Single-stage
The discharge pressure of the single-stage air compressor is used to control the operation of the compressor. Properly designed load/unload controls allow the air compressor to operate at its most efficient point while minimizing stress on the main engine bearings. Single-stage air compressors can approach variable speed efficiency with appropriate storage capacity. However, improper storage can cause premature bearing wear on the main unit. If this is the case, a single-stage air compressor may not be ideal.
A single-stage air compressor has only one cylinder, which means one stroke is required to move air from one cylinder to another. Pressure is measured in cubic feet per minute or CFM. Tank size is also important as a large single-stage air compressor may be required to operate multiple air tools. Single-stage air compressors can be used in a variety of applications and can last for years.
For the most common uses, single-stage air compressors are the most practical option. These devices work with most hand tools, from hammers to grinders. Single-stage air compressors are lightweight and easy to move. However, two-stage air compressors provide more CFM, making them a better choice for industrial or commercial use. However, two-stage compressors are not suitable for private use. Therefore, if your main purpose is DIY and craft projects, it is better to choose a single-stage air compressor.
Compared with two-stage air compressors, single-stage screw air compressors are cheaper. They come from a variety of manufacturers and range in power from 3 to 600 horsepower. Single-stage air compressors are a cost-effective solution for a variety of air compressor needs. They offer flexibility and multiple control methods, making them an excellent choice for many different applications. Therefore, when choosing an air compressor for your business, choose the one with the most suitable functions.
Single-stage air compressors are the most affordable and easy-to-use air compressors for small to medium jobs. They also have higher compression ratios. The compression ratio is the ratio of absolute discharge pressure to absolute inlet pressure. When calculating the ratio, it takes into account atmospheric pressure and gauge pressure. The compression ratio pushes the surface area of the rotor, which increases the thrust load.
Single-stage air compressors are smaller and easier to transport than two-stage units. Single-stage air compressors have one air intake, and two-stage air compressors have two air intakes. The difference between single-stage and two-stage air compressors largely depends on the number of times the air is compressed. A single-stage air compressor compresses the air once, while a dual-stage air compressor compresses the same amount of air twice.
low noise
Low noise air compressors are ideal for a variety of applications. While no air compressor is completely silent, some models are much quieter than others. For the Hitachi EC28M portable compressor, the noise level is 59 decibels. The compressor features steel rollers that protect the internal components and give it a sleek, modern look. It also has a one-gallon fuel tank and a half-horsepower drive.
Noise from air compressors can be distracting and reduce productivity. It is important to choose low-noise air compressors to keep employees healthy and happy at work. While noise is an unfortunate aspect of working on the shop floor, reducing it can improve productivity. By reducing distracting noise, employees can focus on their work and communicate more effectively. That means higher quality work and happier clients. If you’re looking for a low-noise air compressor, be sure to read the tips below.
Low noise air compressors are an excellent choice for businesses of all sizes. These powerful tools can run multiple tools simultaneously. The two water tanks are made of rust-resistant aluminum and are stackable. This air compressor is heavier and can handle large jobs with ease. It costs more than other air compressors, but it can handle a lot of work efficiently. CZPT Air Tools air compressors come with a one-year warranty and are highly recommended by contractors.
Noiseless air compressors are generally more expensive than comparable products, but they are worth the extra cost. Noiseless compressors are a good option for businesses that need to avoid disturbing nearby people. For example, you might want to consider a low-noise air compressor for a dental office, which cannot tolerate noise. Fortunately, this problem can be solved by relocating the compressor to a location that is more isolated from your workspace.
One brand of low-noise air compressors offers two models. The CZPT Air Tools 2010A features a large cast aluminum can, regulating pressure gauge, and two universal quick-connects. It produces 68 decibels of noise when it works. It has a large 8-gallon fuel tank capacity and has wheels and handles for easy transport. Its powerful engine produces a low noise level of 68 decibels.
Another popular low noise air compressor is the Makita MAC210Q Quiet Series. This model is capable of producing up to 71.5 decibels of sound, which is the amount of air it produces at 90PSI. The MAC210Q features a durable oil-free pump and weighs just 36 pounds with a handle and wheels. These compressors are easy to move and ideal for indoor work.

editor by czh 2023-01-23
.webp)
.webp)
.webp)
.webp)
.webp)







